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A B S T R A C T

The issue of delay propagation prediction in airport networks has garnered increasing global attention,
particularly due to its profound impact on operational efficiency and passenger satisfaction in modern air
transportation systems. Despite research advancements in this domain, existing methodologies often fall
short of comprehensively addressing the challenges associated with predicting delay propagation in airport
networks, especially in terms of handling complex spatial–temporal dependencies and sequence couplings.
In response to the complex challenge of predicting delay propagation in airport networks, we introduce the
Fusion-based Adaptive Spatial–Temporal Learning with Coupled Attention (FAST-CA) framework. FAST-CA is
an innovative model that integrates dynamic and adaptive graph learning, coupled attention mechanisms,
periodicity feature extraction, and multifaceted information fusion modules. This holistic approach enables
a thorough analysis of the interplay between flight departure and arrival delays and the spatial–temporal
correlations within airport networks. Rigorously evaluated on two extensive real-world datasets, our model
consistently outperforms current state-of-the-art baseline models, showcasing superior predictive performance
and the effective learning capabilities of its intricately designed modules. Our research highlights the criticality
of analyzing spatial–temporal relationships and the dynamics of flight coupling, offering significant theoretical
and practical contributions to the advancement and management of air transportation systems.
. Introduction

The burgeoning demand for air travel and the growth of intricately
onnected air transportation networks have precipitated heightened
ongestion and resultant flight delays. Over recent decades, such delays
ave ascended the ranks as a pivotal concern in both airport manage-
ent and flight scheduling. These inefficiencies not only compromise

he streamlined operations of air transportation systems but also sway
assenger decisions. Within the U.S. context, the annual aggregate cost
f delays is staggering, exceeding an estimated $30 billion [1]. In
018 alone, the U.S. grappled with close to 2 million flight delays,
nducing significant disruptions within its air traffic systems [2]. A
redominant catalyst for these flight delays is the propagation behavior
bserved in preceding and succeeding flights [3]. Given the complex in-
erdependencies inherent to air traffic networks, such delays invariably
roliferate throughout the entire aviation system, creating a cascade of
isruptions. Therefore, unraveling the intricacies of delay propagation

∗ Corresponding author at: School of Data Science, The Chinese University of Hong Kong, No. 2001 Longxiang Avenue, Longgang District, Shenzhen, 518172,
uangdong, China.

E-mail address: jfmao@cuhk.edu.cn (J. Mao).
1 In this study, we utilize International Air Transport Association (IATA) codes to represent the names of airports.

within aviation networks and accurately forecasting airport delay mag-
nitudes is of utmost importance. Insights gleaned from this research
are crucial for mitigating the extensive economic impacts of delays,
enhancing the operational efficiency of air transportation systems, and
significantly improving passenger satisfaction.

As elucidated in [4], predicting delay propagation in airport net-
works is not a straightforward time series problem but rather one
influenced by intricate spatial correlations and numerous external fac-
tors. Building upon the four challenges outlined in [4], we delve into
a practical case study to illustrate the comprehensive range of factors
impacting this issue. Furthermore, we identify and articulate five key
challenges that we believe are critical in influencing the prediction of
airport network delay propagation. As depicted in Fig. 1, the propaga-
tion of airport delays is influenced by a myriad of factors, including
geographic proximity, weather conditions, and airline schedules. Illus-
tratively, adverse weather conditions in the Eastern United States, due
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566-2535/© 2024 Elsevier B.V. All rights reserved.

ttps://doi.org/10.1016/j.inffus.2024.102326
eceived 30 November 2023; Received in revised form 23 February 2024; Accepte
d 26 February 2024

https://www.elsevier.com/locate/inffus
https://www.elsevier.com/locate/inffus
mailto:jfmao@cuhk.edu.cn
https://doi.org/10.1016/j.inffus.2024.102326
https://doi.org/10.1016/j.inffus.2024.102326


Information Fusion 107 (2024) 102326C. Li et al.
Fig. 1. Depicting the complex spatial–temporal relationships in airport network delay propagation. Circles represent six major international airports: BOS, JFK, MDW, SEA, SFO,
and SAN, with varied colors indicating the level of delay at each airport. Three geographically distributed diagrams illustrate the delay status of airports at different time instances
and their corresponding flight schedules, denoted by fine gray arrows. These diagrams also capture three distinct spatial–temporal dependencies prevalent during delay propagation.
The heatmap portrays the pairwise relationships between airports, which dynamically evolve over time. Proximity in airport locations reveals similarities in delay levels, often
influenced by shared weather conditions. At the bottom, a subplot delineates the time-series variation in both departure and arrival delays at JFK airport over a week, highlighting
the interdependency and periodic nature between the two curves.
to their geographic proximity, are causing flight departure delays at
JFK1 and BOS airports. This results in a positive correlation of delays
within the Eastern region. Over time, these departure delays contribute
to increasing arrival delays at a central region airport, such as MDW.
This cascade effect gradually extends nationwide, ultimately impacting
Western coastal airports like SEA, SFO, and SAN. In Fig. 1, this pro-
gression is observable as delays move from east to west, culminating
at three distinct time points. This scenario underscores five primary
challenges in predicting airport network delay propagation:

• External Influences: Air travel operations are notably suscep-
tible to external conditions, particularly severe weather events
like thunderstorms, dense fog, and hurricanes. These elements are
primary contributors to aviation delays. As Fig. 1 illustrates, a
thunderstorm can significantly disrupt flight schedules.

• Coupled Spatial–temporal Dependencies: Delay propagation
is a product of the interconnected influences of both time and
location. Delays at one site can ripple through the network over
time, impacting subsequent flights at the original location and
2

other connected nodes. This phenomenon underscores the inter-
twined nature of space and time in aviation operations. In Fig. 1,
the three arrows represent spatial–temporal correlation, temporal
correlation, and spatial dependency, respectively.

• Departure–Arrival Delay Relationship: The interrelation be-
tween arrival and departure delays is evident, as shown by the
Weekly Average Delay at JFK in Fig. 1. A delay in departure at
one airport can lead to arrival delays at a connected airport, and
vice versa.

• Dynamic and Adaptive Spatial Dependencies: The adjacency
matrices depicted in Fig. 1 are dynamic, reflecting the evolving
nature of airport delay propagation over time. Our model cap-
tures these intricate relationships adaptively, offering a nuanced
understanding of the dynamic spatial factors influencing delays.

• Periodicity in Airport Delays: Airport delay time series data
frequently display periodic characteristics, marked by daily and
weekly patterns. This cyclical nature of delays is vividly illus-
trated in Fig. 1, which showcases the weekly average delay met-
rics at JFK airport.
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Table 1
Comparison of airport delay prediction methodologies.

Feature/method Traditional statistical Data-driven Deep learning FAST-CA

Theoretical basis Mathematical models Statistical learning (Graph) Neural networks Graph neural networks
Key characteristics Robust principles Feature engineering Feature learning Fusion-based and adaptive and dynamic

graph learning
Data scalability Limited Moderate High High
Temporal dynamics Basic models Improved with machine learning Recurrent neural networks,

attention-based
Context-aware attention

Spatial dynamics Simplistic Improved with machine learning Convolutional neural networks,
graph-based

Adaptive graph learning

Predictive performance Good interpretability Better accuracy High potential State-of-the-art
Computational efficiency High Moderate Varies Optimized and acceptable
Application scalability Limited Moderate High High
Given the aforementioned significance and challenges of airport
etwork delay propagation, the past two decades have witnessed a
urge in research efforts aimed at modeling this issue. These efforts
ave evolved from early mathematical and statistical methods to data-
riven approaches, and more recently, to deep learning methodologies
hat specifically address spatial–temporal dependencies. Traditional
tatistical approaches are designed to analyze the inherent mecha-
isms of delay propagation and identify key factors influencing de-
ays using mathematical models. These include queueing theory [5,6],
urvival models [7], and regression models [8]. While these meth-
ds typically offer robust principle-based explanations, they may en-
ounter challenges when dealing with high-dimensional, large-scale
elay propagation data, due to inherent constraints in processing com-
lex datasets. Data-driven methods typically employ machine learning
lgorithms, such as random forest [9–11], to select influencing factors
nd represent features for predicting specific airport or network states.
hile effective, these approaches often rely on domain knowledge

rom experts for feature construction and tend to utilize shallow rep-
esentations. In recent years, deep learning techniques have gained
idespread adoption for modeling delay propagation in airport net-
orks [12–14]. However, these methods often do not fully address

he complex challenges involved in delay propagation modeling, such
s the dynamic nature of spatial–temporal dependencies, the coupling
f spatial–temporal factors, the intertwined nature of departure and
rrival delay sequences, and the impact of periodic factors. In Table 1,
e provide a detailed description of the comparison between various

ypes of airport network delay prediction methods and FAST-CA across
ifferent feature dimensions.

In an effort to address the five challenges mentioned earlier and
ecognize the limitations of existing deep learning methodologies, we
ropose the Fusion-based Adaptive Spatial–Temporal Learning with
oupled Attention (FAST-CA) framework for airport network delay
ropagation prediction. Our approach first considers the dynamic graph
haracteristics and integrates weather features as inputs for the adap-
ive graph learning module. We then employ coupled attention mech-
nisms to fuse features of both temporal and spatial dependencies, as
ell as the interlinked departure and arrival delay sequences. Subse-
uently, we incorporate context-aware positional encoding combined
ith a self-attention mechanism to model temporal dependencies and
xtract periodic features. By fusing the outputs of these modules,
e achieve predictions of future delay scenarios in airport networks.
ested on two types of real-world delay datasets, FAST-CA demon-
trates superior performance, outperforming existing state-of-the-art
aseline models. Overall, the contributions of our research can be
ummarized as follows:

1. Our proposed FAST-CA framework delivers an exhaustive analy-
sis of spatial–temporal dependencies, effectively addressing the
identified challenges. By employing advanced information fusion
techniques, we achieve a profound understanding of the dynam-
ics of airport network delay propagation. This comprehensive
approach ensures meticulous modeling of multiple facets of
airport delays, resulting in predictions that are both accurate and
rich in insights.
3

2. Incorporating a dynamic and adaptive graph learning module,
FAST-CA adeptly captures the evolving relationships between
airport nodes. This module’s ability to dynamically extract and
adapt to complex relationships in continuously changing airport
networks allows for a nuanced understanding of inter-node inter-
actions, essential for precise delay predictions in such a dynamic
setting.

3. We recognize the importance of periodic patterns and the in-
terrelation between departure and arrival sequences in delay
propagation. FAST-CA integrates these critical elements to sig-
nificantly enhance prediction accuracy. By incorporating these
cyclical patterns and coupled relationships, our framework ex-
cels in forecasting delays, particularly in recurring operational
scenarios where traditional models may struggle.

4. Extensive testing of FAST-CA on two large-scale datasets has val-
idated its effectiveness in predicting both arrival and departure
delays. This thorough testing not only confirms the robustness of
our model but also underscores its applicability and reliability
in real-world settings. The model’s proven efficacy in handling
large-scale datasets positions it as a valuable asset for managing
airport delays.

The remainder of this article is organized as follows. Section 2
presents a comprehensive review of the related works, encompass-
ing delay propagation modeling and prediction methodologies ranging
from classical statistical methods to data-driven approaches and deep
learning techniques. Section 3 delves into the intricate construction of
our FAST-CA framework, detailing its unique components and oper-
ational mechanisms. In Section 4, we provide an exhaustive account
of the experiments conducted to validate the efficacy of our proposed
model. This section also includes an ablation study and demonstrates
the learning capabilities of our framework’s key modules. We conclude
the article in Section 5, where we reflect on our findings and explore
potential avenues for future research.

2. Related works

2.1. Classical statistical methods

The problem of modeling flight delay propagation has been exten-
sively studied over the past two decades, with the earliest research
tracing back to a simple delay multiplier index [15]. This index mea-
sures the ratio between the initial delay and the summation of the
downstream delay. Subsequent to the initial studies, survival models
are proposed to examine patterns of flight delay and its propagation,
as well as to assess the potential impact of various factors on departure
and arrival delays [7]. For analyzing the network effects of delay prop-
agation, a multivariate simultaneous regression model is introduced.
This model aims to identify contributing factors and examine delay
propagation interactions emanating from a single airport to the rest of
the network [8]. In addition to examining delay propagation resulting
from aircraft, several studies have also investigated the impacts of crew
and passenger connectivity [16].
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Furthermore, the queueing theory has gained popularity in model-
ing flight delay propagation [5,6]. In these studies, flights are consid-
ered as customers, and runways serve as servers processing the flights
as departure and arrival flows. The objective is to understand how
delays at one airport can propagate through the network, affecting
the performance of other airports and flights, using various evaluation
metrics. These methods, grounded in mathematical principles, typically
offer good interpretability. However, they may struggle in dealing with
large-scale datasets, high-dimensional problems, and the complexities
of extensive network delay propagation.

2.2. Data-driven methods

In recent years, a variety of data-driven approaches have been
employed to analyze and predict flight delays and the overall state of
airport networks. In [9], the K-means clustering algorithm is integrated
with the random forest method to construct temporal and spatial
explanatory variables for predicting future network delay scenarios.
An innovative framework that combines a deep belief network (DBN)
with support vector regression (SVR) has been explored to uncover
intrinsic patterns of flight delays and identify micro-level key factors
influencing these delays [17]. Additionally, the concept of chained
flight delay prediction has been examined by merging the strengths
of mathematical models and machine learning methods [10]. This
approach facilitates the analysis of large-scale datasets while capturing
the intrinsic relationships between airports.

From a network perspective, studies have integrated network met-
rics like betweenness centrality with airport delay series to predict
flight delays based on fitting performance [18]. In [19], various ma-
chine learning models have been proposed for predicting flight de-
lay propagation and analyzing airport network dynamics. A recent
study [11] introduces a spatial–temporal model that combines spatial
features constructed from network metrics with temporal states to
predict the status of flight delays. While these data-driven methods
have achieved anticipated performance improvements, they are heavily
reliant on feature engineering and expert knowledge and tend to offer
only a superficial representation of feature characteristics.

2.3. Spatial–temporal methods

Graph neural networks (GNNs) have shown remarkable capabil-
ities in traffic flow forecasting, effectively capturing and modeling
the dynamic and uncertain aspects of spatial–temporal traffic flows.
Within this spatial–temporal graph neural network (ST-GNN) model-
ing framework, GNN-based models are typically employed to extract
spatial relationships between nodes, while recurrent neural networks
(RNNs), temporal convolutional networks (TCNs), and self-attention
mechanisms are often integrated to model the temporal dependencies
in time series data.

In [20], the STGCN framework combines graph convolutional net-
works (GCNs) with temporal gated convolution to extract spatial–
temporal dependencies in time series. ASTGCN [21] integrates an
attention mechanism to learn the spatial–temporal dependencies of
traffic flow, further considering periodic features like recent, daily, and
weekly patterns. These early approaches to spatial–temporal modeling
often rely on predefined adjacency matrices. Acknowledging network
dynamics, Graph WaveNet [22] proposes the generation of adaptive
adjacency matrices through node embeddings. This concept is also
applied in AGCRN [23], which additionally considers heterogeneous
parameter learning for nodes through matrix decomposition in a scal-
able manner. Following this, Ada-STNet [23] introduces a two-stage
training approach for learning adaptive adjacency matrices, a method-
ology further extended in AdapGL [24], where the prediction network
module and the graph learning module are optimized through alternate
4

training. While these learned adjacency matrices represent an optimal e
measurement of node relationships, they often fail to capture the dy-
namic nature of actual spatial relationships due to continual temporal
changes. To address this, STCGAT [25] models spatial information
extraction for each node at every moment through dynamic graph
inputs, coupled with TCNs for capturing temporal dependencies in
traffic flow. Similarly, LATFPM [26] considers a multi-relational graph
structure and dynamic graph inputs to tackle the prediction of airport
arrival flow.

Moreover, as illuminated by [27], graph signal processing offers
a powerful toolkit for examining flight delay propagation. In this
context, airport delays can be conceptualized as node signals within a
graph, facilitating the delineation and quantification of diverse spatial–
temporal patterns through graph spectral analysis. As summarized
in Table 2, there have been six notable publications dedicated to
employing spatial–temporal graph neural networks for predicting air-
port network delay propagation. A deep graph-embedded LSTM model
(DG-LSTM) is initially proposed to leverage a diffusion convolution
kernel to encapsulate delay propagation characteristics and long short-
term memory (LSTM) to unravel temporal dependencies [12]. AG2S-
Net [13], a pioneering graph-to-sequence learning architecture, in-
corporates attention mechanisms and emphasizes adaptive adjacency
matrix construction. To accommodate the time-varying and periodic
nature of airport networks, MSTAGCN [14] is proposed, anchored in
a meticulously designed adaptive graph convolutional block. In [19],
DST-GAT is proposed to use a spatial–temporal graph attention neural
network, employing the graph attention networks (GAT) to capture
the dynamic adjacency matrices. Subsequently, the GOGCN model
is proposed to simultaneously extract geographical and operational
spatial–temporal dependencies of airport network nodes [28]. In a
recent contribution, STPN is suggested in [4], a space–time separa-
ble multi-graph convolutional network framework, facilitating inde-
pendent extraction of temporal and spatial dependencies within the
airport delay network. Their experimental outcomes underscored state-
of-the-art performance across diverse datasets and multi-step prediction
horizons.

Nevertheless, as Table 2 elucidates, these studies still overlook
certain practical aspects inherent in airport network delay propagation,
such as the dynamic nature of inter-airport relationships and the inabil-
ity of existing matrices to precisely quantify specific influence relation-
ships, as well as the intricate coupling between departure and arrival
delays. Consequently, our research introduces a more comprehensive
spatial–temporal graph analysis framework to model the complex and
dynamic delay propagation process within airport networks.

3. Methodology

In our methodology, as outlined in Fig. 3, the proposed FAST-
CA framework integrates dynamic graph inputs with weather data
using a fusion-based adaptive spatial–temporal learning approach. This
framework skillfully merges spatial and temporal dynamics through an
adaptive graph learning module and a dual attention mechanism, which
includes both self and cross-attention components. These features equip
the framework with the capability to capture complex interactions
between flight departure and arrival sequences, the coupling of spatial
and temporal dependencies, and the influence of weather and periodic
features. Consequently, this enhances the precision of airport network
delay propagation predictions.

3.1. Problem formulation

In this study, the airport network delay propagation prediction
problem is conceptualized as follows. Given a set of 𝑁 airports, we
represent these airports as a weighted graph  = { , }, encapsulating
the topological structure of the airport network. Here,  denotes the
et of airport nodes, with || = 𝑁 , and  signifies the set of connecting

dges amongst all nodes within graph . We demonstrate the historical
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Table 2
Summary of the characteristics and description of ST-GNN models for flight delay propagation prediction.

Literature Data scope Spatial
correlation

Temporal
correlation

Adjacency
matrix
generation

Weather Temporal
periodicity

Dynamic
graph

Spatial–
temporal
coupling

Departure-
arrival
correlation

DG-LSTM [12] U.S. GCN LSTM Predefined – – – – –
AG2S-Net [13] China GCN Bi-LSTM; Attention Predefined ✓ – – – –
MSTAGCN [14] China GCN R-GCN Predefined – – – – –
DST-GAT [19] Europe GAT LSTM Predefined – – – – –
GOGCN [28] China GCN – Predefined – – – – –
STPN [4] U.S.; China GCN Self attention;

Positional encoding
Predefined ✓ ✓ – – ✓

Our work U.S.; China GAT Self attention;
Context-aware
positional encoding

Predefined;
Adaptive
learning

✓ ✓ ✓ ✓ ✓

The symbol ‘‘✓’’ indicates that the aspect is considered in the study, while ‘‘–’’ denotes that it is not considered.
Fig. 2. Visualization of the process of problem formulation.
←←
delay information of the airport network over a time span of 𝑇 by a
feature matrix 𝐗 ∈ R𝑁×𝑇×2, where ‘‘2’’ reflects the feature dimension,
accounting for both departure and arrival delay series. Specifically,
arrival and departure delays are represented by vectors 𝐗𝑖,𝑗 ∈ R2

indicating the delays at the airport 𝑖 at time 𝑗, and covariate vectors
𝐙𝑖,𝑗 ∈ R𝐷 indicating the type of weather at the airport 𝑖 at time 𝑗, with
𝐷 being the number of weather categories. Additionally, we denote
𝐗(𝑡) = {𝐗1,𝑡,𝐗2,𝑡,… ,𝐗𝑁,𝑡} ∈ R𝑁×2 and 𝐙(𝑡) = {𝐙1,𝑡,𝐙2,𝑡,… ,𝐙𝑁,𝑡} ∈
R𝑁×𝐷 as the sets of delay and weather information for all airport nodes
at time 𝑡, respectively. We will present a real-world scenario to visu-
ally demonstrate the notation used in our modeling process and how
the FAST-CA modules predict delay propagation. In Fig. 2, using the
Chinese dataset as an example, we illustrate the graphical information
at a specific moment, 𝑡𝑖: August 4, 2016, at 16:30. From 𝐗(𝑡𝑖) and 𝐙(𝑡𝑖),
we can also derive data regarding each airport’s departure, arrival, and
weather conditions at that moment. For instance, the weather condition
at CAN airport at this time is noted as cloudy, denoted by 𝑍2,𝑡𝑖 . Based
on the historical data, the model predicts future delay values, including
both arrival and departure delays. The predictions for 12 timesteps later
5

are displayed in Fig. 2. In this context, the task of predicting airport
network delay propagation is summarized as follows:
[(

𝐗(𝑡−ℎ+1),… ,𝐗(𝑡)
)

;
(

𝐙(𝑡−ℎ+1),… ,𝐙(𝑡)
)

;
] 𝑓 (⋅)
←←←←←←←←←←←←←←←→

[

𝐗(𝑡+1),… ,𝐗(𝑡+𝑝)
]

(1)

Here, a function 𝑓 (⋅) is devised to learn from ℎ historical delay observa-
tions and covariates based on graph , aiming to predict future 𝑝 delay
states within the network. The subsequent section will elucidate how
we utilize the proposed FAST-CA framework to model this mapping
𝑓 (⋅)
←←←←←←←←←←←←←→. For enhanced clarity, we delineate the essential notations used in
the methodological description and subsequent data processing sections
in Table 3.

3.2. Adaptive graph learning module

In the spatial dependence modeling, the delay states of each airport
are interrelated and subject to dynamic changes. For instance, under
certain severe weather conditions, widespread delays in flights from
Beijing to Shanghai can exacerbate the delay states of both airports at
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Fig. 3. Architecture of the FAST-CA Framework. (a) This schematic illustrates the FAST-CA framework, highlighting its integration of dynamic graphs and weather data inputs.
Central to the framework is the adaptive graph learning module paired with a dual attention mechanism, adeptly capturing the complex interplay between spatial–temporal factors
and flight departure and arrival sequences for accurate airport network delay predictions. (b)–(d) provide detailed representations of three core modules within the FAST-CA
framework: the adaptive graph learning module, the context-aware temporal attention module, and the task-oriented attention module, respectively.
Table 3
Summary of representative symbols and their descriptions.

Symbol Description

𝑁 The number of airport nodes in a network.
 The graph structure.
𝐀glb ∈ R𝑁×𝑁 The global distance adjacency matrix.
𝐗 ∈ R𝑁×𝑇×2 The historical delay information of the airport network over a time span of 𝑇 .
𝐗arr ∈ R𝑁×𝑇×1 The network-wide arrival delay series.
𝐗dep ∈ R𝑁×𝑇×1 The network-wide departure delay series.
�̂� ∈ R𝑁×𝑇×2 The predicted delay values of the airport network over a time span of 𝑇 .
�̃� ∈ R𝑁×𝑇×𝐶 The fused feature vector from delay and embedded weather features.
𝐙 ∈ R𝑁×𝑇×𝐷 The weather values of the airport network over a time span of 𝑇 .
𝐗(𝑡) ∈ R𝑁×2 The sets of delay information for all airport nodes at time 𝑡.
𝐙(𝑡) ∈ R𝑁×𝐷 The sets of weather information for all airport nodes at time 𝑡.
𝐸𝐴𝑡 ∈ R𝑁×𝑑 The embedding dictionary for each airport node.
𝑊 ∈ R𝑑×𝐶×𝐹 The shared weight pool.
𝛼𝑡,𝑞
𝑖𝑘 The normalized coefficient between node 𝑖 and node 𝑘 in 𝑞th attention group at time 𝑡.

�̃�′′
(𝑡) ∈ R𝑁×𝐹 ′ The feature vectors of all nodes at time 𝑡 output by the adaptive graph learning module.

𝐻 ′ ∈ R𝑁×𝑇×2𝐹 ′′ The spatial–temporal fusion module’s output feature matrix over 𝑇 time steps.
𝐻 ′′ ∈ R𝑁×𝑇×2𝐹 ′′ The feature vector matrix over 𝑇 time steps, integrated with periodic positional encoding.
𝐻 ′′′ ∈ R𝑁×𝑇×𝐹 ′′′ The context-aware temporal attention module’s output feature matrix over 𝑇 time steps.
�̃� ∈ R𝑁×𝑇×2𝐹 The task-oriented attention module’s output feature matrix over 𝑇 time steps.
6
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𝐴

𝛼

w
that time. Consequently, the relationship between these two airports
might become less tight due to reduced flights. However, as the weather
gradually improves over time, leading to an amelioration in delays, the
relationship between the two airports tightens once again, driven by the
importance of the flight routes connecting them. Previous literature on
modeling airport network delay propagation predominantly relied on
predefined matrices [13,14], failing to account for the dynamic nature
of the airport network. Moreover, multi-relational graphs constructed
based on domain expertise, such as distance graphs, origin–destination
graphs, and similarity graphs, have not fully captured the dynamic
interplay of relationships exhibited by airport networks at different
times. They also fall short in portraying the optimal relationship matrix
between airport nodes [29]. To address these issues, as depicted in
Fig. 3(b), our study adopts an adaptive graph learning module.

Similar to the approaches in [23,25], our proposed adaptive graph
learning module first learns the embedding vectors of airport nodes to
effectively discern the dynamic correlation information among these
nodes at different moments, thereby generating an adaptive adjacency
matrix specific to each corresponding moment. However, we recognize
that while the delay states of airports, which are reflected through the
node embedding vectors, dynamically influence their adjacency rela-
tionships, the distance relationships between airports are static from a
global perspective and cannot be captured through adaptive learning
alone. Therefore, we introduce the Adaptive-Fixed Matrix Integration
(AFMI) module, which innovatively combines the adaptively generated
adjacency matrix with a predefined distance matrix. This approach is
designed to more comprehensively reflect the local dynamic and global
stationary characteristics of the adjacency relationships between airport
nodes. Through the AFMI model, we generate an adjacency matrix for
each moment 𝑡, as illustrated by the following formula:

̃𝑡 = sof tmax
(

ReLU
(

𝐸𝐴𝑡 ⋅ 𝐸
𝑇
𝐴𝑡
)

+ 𝐴glb) (2)

where 𝐸𝐴𝑡 ∈ R𝑁×𝑑 serves as the embedding dictionary for each airport
node, with 𝑑 representing the dimension of these node embeddings. The
transpose form 𝐸𝑇

𝐴𝑡, is used alongside the predefined distance matrix
𝐴glb. The model incorporates the ReLU activation function for intro-
ducing non-linearity and employs softmax for normalization, ensuring
well-scaled outputs.

Subsequently, we have developed a module, termed AFMI–GAT,
which inputs the generated adaptive adjacency matrices at each time
step into the GAT framework. This facilitates the dynamic aggregation
of neighboring node features for each airport node by calculating
attention coefficients, in conjunction with the node’s feature vectors.
It is important to note that we are not considering the original delay
features of airport nodes. Given the significant impact of weather
on delays and the interdependence of weather conditions across dif-
ferent airports, we initially embed the original weather features of
each airport. These embedded weather features are then concatenated
and integrated with the delay features, forming a composite feature
vector �̃�𝑖,𝑗 ∈ R𝐶 for airport node 𝑖 at time 𝑗. Additionally, diverging
from traditional GAT networks where parameters are uniformly shared
across all nodes, our approach, inspired by the node adaptive parameter
learning from [23], recognizes the distinct patterns of different airport
nodes. To balance model complexity and specificity, we utilize a shared
weight pool 𝑊 ∈ R𝑑×𝐶×𝐹 . This weight pool dynamically interacts with
each node’s embedding vector 𝐸𝐴𝑡, generating unique parameter matri-
ces 𝛩 = 𝐸𝐴𝑡 ⋅𝑊 ∈ R𝑁×𝐶×𝐹 that reflect the individual characteristics of
each node, without excessively enlarging the model’s parameter space.
Summarizing the above, the AFMI–GAT module we employ is depicted
by the following formula:

𝑒𝑡𝑖𝑗 = LeakReLu
(

𝑎𝑇
[

(

𝐸𝐴𝑡 ⋅𝑊
)

𝑖 ⋅ �̃�𝑖,𝑡 ∥
(

𝐸𝐴𝑡 ⋅𝑊
)

𝑗 ⋅ �̃�𝑗,𝑡

])

𝑡
𝑖𝑗 =

exp
(

𝑒𝑡𝑖𝑗
)

∑

̃𝑡 exp
(

𝑒𝑡
)

(3)
7

𝑘∈𝐴
𝑖 𝑖𝑘
here 𝑎 ∈ R2𝐹 is the weight vector,
(

𝐸𝐴𝑡 ⋅𝑊
)

𝑖 ∈ R𝐶×𝐹 represents
the parameter matrix at node 𝑖, ∥ denotes the concatenation operation,
and LeakReLU is the nonlinear activation function.  �̃�𝑡

𝑖 is defined
as the neighbor nodes of node 𝑖 at time 𝑡 in the generative dynamic
graph �̃�𝑡. 𝑒𝑡𝑖𝑗 and 𝛼𝑡𝑖𝑗 are the attention coefficients and normalized
attention coefficients between node 𝑖 and its neighbor node 𝑗 at time 𝑡,
respectively.

As the efficacy of multi-head attention in stabilizing the learning
process of self-attention has been substantiated [30], we also em-
ploy this mechanism to more profoundly extract feature information
pertinent to modeling spatial dependencies. Specifically, 𝑄 attention
mechanisms independently carry out the transformation delineated
in Eq. (3). The features extracted by each mechanism are then con-
catenated, culminating in the following representation of the output
features:

�̃�′
𝑖,𝑡 =∥

𝑄
𝑞=1 LeakReLu

⎛

⎜

⎜

⎜

⎝

∑

𝑘∈ �̃�𝑡
𝑖

𝛼𝑡,𝑞𝑖𝑘
(

𝐸𝐴𝑡 ⋅𝑊
𝑞


)

𝑘
⋅ �̃�𝑖,𝑡

⎞

⎟

⎟

⎟

⎠

(4)

where 𝛼𝑡,𝑞𝑖𝑘 is the normalized coefficient computed by the attention
mechanism of the 𝑞th group at time 𝑡,

(

𝐸𝐴𝑡 ⋅𝑊
𝑞


)

𝑘
∈ R𝐶×𝐹 represents

the weight matrix of the corresponding group at the neighbor node 𝑘,
and �̃�′

𝑖,𝑡 ∈ R𝑄𝐹 is the new feature representation obtained for node 𝑖 at
time 𝑡 through the multi-head graph attention layer.

Given that the dimensionality of each node’s new feature vector
becomes substantially large after parallel aggregation of neighboring
node information via the multi-head graph attention network, which
will complicate the training process, we implement an independent
self-attention mechanism layer. This layer reduces the dimensionality
of each node’s feature vector from �̃�′

𝑖,𝑡 ∈ R𝑄𝐹 to �̃�′′
𝑖,𝑡 ∈ R𝐹 ′ for the

output of the multi-head attention layer. Upon completing the graph
attention representation process for all nodes using the aforementioned
method, we obtain the new feature vectors for all nodes at time 𝑡 as
�̃�′′
(𝑡) =

{

�̃�′′
1,𝑡, �̃�

′′
2,𝑡,… , �̃�′′

𝑁,𝑡

}

∈ R𝑁×𝐹 ′ .
To highlight the advantages of our adaptive graph learning module

over existing methods in terms of spatial information modeling and
comprehensive problem consideration, we will conduct a multifaceted
comparison in Table 4. Our AFMI–GAT module not only accounts for
the local dynamics and global stationary characteristics of distance re-
lationships between airport nodes but also integrates external weather
information, reflecting the mutual impact of weather conditions across
different airports. Furthermore, the multi-head attention graph network
and dynamic graph framework enhance our ability to extract complex
delay propagation characteristics. The performance of our novel AFMI–
GAT module, when replacing the corresponding spatial information
extraction models within the STCGAT and STPN frameworks, will be
evaluated in terms of efficiency, accuracy, and scalability. Detailed
comparisons and analyses will be presented in the ablation study of
Section 4.5.

3.3. Spatial–temporal fusion module

Considering that delays propagate through the aviation network
from one airport to another, following the flight schedule connec-
tions, and given that the delay time series of different airports are
interrelated, we have designed a spatial–temporal fusion module. This
module is specifically tailored to model the spatial–temporal depen-
dencies inherent in the delay propagation process. As illustrated in
Fig. 4, we have replaced the gating unit in the original gate recurrent
unit (GRU) structure with the AFMI–GAT framework. This adaptation
allows us to extract temporal features from the delay sequences while
simultaneously considering the spatial dependencies identified by the
adaptive graph learning module.

Specifically, the output from the adaptive graph learning module at

time 𝑡 serves as the input to the GRU model. The operational workflow
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Table 4
Analysis and feature summary of existing methods in spatial information modeling.

Literature Target Local
adaptive
modeling

Global
stationary
modeling

External
features
fusion

Dynamic
graph
structure

Spatial
modeling
methods

Distinct
nodel
parameters

AG2S-Net [13] Airport network
delay prediction

– ✓ – – GCN –

MSTAGCN [14] Airport network
delay prediction

– ✓ – – GCN –

AGCRN [23] Traffic flow
prediction

✓ – – – GCN ✓

STCGAT [25] Traffic flow
prediction

✓ – – ✓ Multi-head
GAT

✓

STPN [4] Airport network
delay prediction

– ✓ ✓ – GCN –

FAST-CA Airport network
delay prediction

✓ ✓ ✓ ✓ Multi-head
GAT

✓

Fig. 4. The illustration of the spatial–temporal fusion module.
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of our spatial–temporal fusion module is delineated as follows in the
equations:

𝑧𝑡 = 𝜎
(

�̃�𝑡
[

�̃�′′
(𝑡), ℎ𝑡−1

] (

𝐸𝐴𝑡 ⋅𝑊
𝑧


))

𝑡 = 𝜎
(

�̃�𝑡
[

�̃�′′
(𝑡), ℎ𝑡−1

] (

𝐸𝐴𝑡 ⋅𝑊
𝑟


))

�̃� = tanh
(

�̃�𝑡
[

�̃�′′
(𝑡), 𝑟𝑡 ⊙ ℎ𝑡−1

] (

𝐸𝐴𝑡 ⋅𝑊
ℎ̃𝑡


)

𝑡 = 𝑧𝑡 ⊙ ℎ𝑡−1 +
(

1 − 𝑧𝑡
)

⊙ ℎ̃𝑡

(5)

here ℎ𝑡−1 is the output at the previous moment, ℎ̃𝑡 is the candi-
ate hidden layer state, [⋅] represents the concatenation operation in
he feature dimension, and ⊙ denotes element-wise multiplication. In
ddition, 𝐸𝐴𝑡,𝑊 𝑧

 , 𝑊 𝑟
 , and 𝑊 ℎ̃𝑡

 are the learnable parameters, and
𝑡 ∈ R𝑁×𝐹 ′′ is the output at time 𝑡. Upon completing the described
rocedures over 𝑇 time steps, we successfully generate sequence data
hat encapsulates the fused spatial–temporal dependencies. This data
s represented as 𝐻 ∈ R𝑁×𝑇×𝐹 ′′ , effectively capturing the complex
nteractions within the given time frame.

Moreover, drawing insights from [25,31], we have learned that in
any traffic data modeling scenarios, the data relationships extend

eyond mere sequences to encompass complex contextual dynamics.
herefore, adopting a similar approach, we utilize a bidirectional GRU
ramework to learn the intricate spatial–temporal dependencies in the
irport network delay propagation process. The reverse operation mir-
ors the aforementioned steps, and we concatenate the outputs of the
orward and reverse GRU processes to obtain the final output 𝐻 ′ ∈
𝑁×𝑇×2𝐹 ′′ .

.4. Context-aware temporal attention module

In the FAST-CA framework, the context-aware temporal attention
odule is a key element, functioning on the outputs from the spatial–
8

emporal fusion module. This module initially utilizes context-aware
ositional encoding, infusing the representation with daily and weekly
eriodic features. This enhancement significantly boosts the model’s
roficiency in capturing temporal dependencies inherent in time se-
ies data. These encodings are amalgamated to create an exhaustive
ime representation, subsequently processed through the self-attention
echanism to yield the final output representation.

As demonstrated in Fig. 1, we observe distinct daily and weekly
eriodic characteristics in the time series of both departure and ar-
ival delays at airports. Therefore, diverging from the classical po-
itional encoding method proposed in [32], we distinguish between
aily and weekly periodic positional information. This differentiation
llows for a deeper semantic understanding of the time series data.
he context-aware positional encoding is delineated in the following
ormula:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑃𝐸𝑑 (𝑡𝑑 , 2𝑠𝑑
)

= sin
(

𝑡𝑑
100002𝑠𝑑∕𝑑model

)

𝑃𝐸𝑑 (𝑡𝑑 , 2𝑠𝑑 + 1
)

= cos
(

𝑡𝑑
100002𝑠𝑑∕𝑑model

) (6)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑃𝐸𝑤 (

𝑡𝑤, 2𝑠𝑤
)

= sin
(

𝑡𝑤
100002𝑠𝑤∕𝑑model

)

𝑃𝐸𝑤 (

𝑡𝑤, 2𝑠𝑤 + 1
)

= cos
(

𝑡𝑤
100002𝑠𝑤∕𝑑model

) (7)

where 𝑃𝐸𝑑 and 𝑃𝐸𝑤 represent the daily and weekly positional encod-
ings, respectively. 𝑡𝑑 ∈ {0, 1,… , 𝑇𝑑−1} denotes the time of day, with 𝑇𝑑
being the maximum daily time, determined by the temporal resolution
of the delay data. Similarly, 𝑡𝑤 ∈ {0, 1,… , 𝑇𝑤 − 1} indicates the time in
the week, and 𝑇𝑤 is the maximum weekly time, also determined by the
temporal resolution of the delay data. The scales 𝑠𝑑 and 𝑠𝑤 fall within
the range [0, 𝑑 ∕2−1]. It is important to note that the dimension of
model
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𝑑model is equal to 𝐹 ′′. Finally, we concatenate the outputs of the two
types of positional encodings to obtain 𝑃𝐸 = 𝑃𝐸𝑑 ∥ 𝑃𝐸𝑤 ∈ R𝑇×2𝐹 ′′ ,

hich is then merged with the output 𝐻 ′ from the spatial–temporal
usion module. This results in a temporally representative sequence
′′ ∈ R𝑁×𝑇×2𝐹 ′′ with integrated periodic features, as shown in the

ollowing formula:
′′ = 𝐻 ′ + 𝑃𝐸 (8)

Multi-head attention operates by concurrently learning various pat-
ern dependencies using multiple sets of queries, keys, and values, with
ach set functioning as an independent attention head. The learned re-
ationships from these multiple heads are then concatenated to form the
utput. In our approach, we employ a self-attention mechanism target-
ng the temporal feature representation 𝐻 ′′ to construct the multi-head
ttention module. The formulation of the multi-head self-attention
odule is shown below:

HSelfAtt = Concat
(

head1,… ,headℎ1

)

ead𝑖 = Att
(

𝑄𝑖, 𝐾𝑖, 𝑉𝑖
)

= sof tmax

(

𝑄𝑖𝐾𝐓
𝑖

√

𝑑1

)

𝑉𝑖
(9)

where 𝑄𝑖 = 𝐻 ′′𝑊 𝑄
𝑖 ∈ R𝑁×𝑇×𝑑1 , 𝐾𝑖 = 𝐻 ′′𝑊 𝐾

𝑖 ∈ R𝑁×𝑇×𝑑1 , and 𝑉𝑖 =
𝐻 ′′𝑊 𝑉

𝑖 ∈ R𝑁×𝑇×𝑑1 . The matrices 𝑊 𝑄
𝑖 ∈ R2𝐹 ′′×𝑑1 , 𝑊 𝐾

𝑖 ∈ R2𝐹 ′′×𝑑1 , and
𝑉
𝑖 ∈ R2𝐹 ′′×𝑑1 are the learned weights. The parameter ℎ1 represents

he number of heads in this multi-head self-attention mechanism, and
e have 𝑑1 × ℎ1 = 𝐹 ′′′, where 𝐹 ′′′ is the final output dimension of
ur context-aware temporal attention module. After completing the
bove calculations, the final output of the module is obtained as 𝐻 ′′′ ∈
𝑁×𝑇×𝐹 ′′′ .

.5. Task-oriented attention module

In the process of flights taking off and landing, an aircraft follows a
re-determined flight itinerary, executing multiple flights and thereby
ropagating delays along this flight chain. Consequently, departure de-
ays at a specific airport can lead to arrival delays at airports connected
ia the flight schedule, and vice versa. Moreover, as our study focuses
n simultaneously predicting average departure and arrival delays
cross the airport network, we have innovatively designed a task-
riented attention module. This module is tailored to more effectively
ntegrate the coupling relationship between departure and arrival delay
equences.

Specifically, our proposed task-oriented attention module is imple-
ented via a multi-head cross-attention mechanism, as illustrated in

he following formula:

HTaskAtt = Concat
(

h̃ead1,… , h̃eadℎ2

)

ẽad𝑖 = Att
(

�̃�𝑖, �̃�𝑖, 𝑉𝑖
)

= sof tmax

(

�̃�𝑖�̃�𝐓
𝑖

√

𝑑2

)

𝑉𝑖
(10)

where �̃�𝑖 = 𝐗arr�̃� 𝑄
𝑖 ∈ R𝑁×𝑇×𝑑2 , �̃�𝑖 = 𝐗dep�̃� 𝐾

𝑖 ∈ R𝑁×𝑇×𝑑2 , and
̃𝑖 = �̃�𝑖 ∥ �̃�𝑖 ∈ R𝑁×𝑇×2𝑑2 . The matrices �̃� 𝑄

𝑖 ∈ R1×𝑑2 and �̃� 𝐾
𝑖 ∈ R1×𝑑2

are the learned weights. 𝐗arr ∈ R𝑁×𝑇×1 and 𝐗dep ∈ R𝑁×𝑇×1 represent
the corresponding arrival and departure delay sequences within the
airport network. The parameter ℎ2 denotes the number of heads in this
multi-head cross-attention mechanism, and we have 2𝑑2 × ℎ2 = 2𝐹 ,
where 2𝐹 is the final output dimension of our task-oriented attention
module. After completing the above calculations, the final output of the
module is obtained as �̃� ∈ R𝑁×𝑇×2𝐹 .

3.6. Fully-connected layer

Finally, we concatenate the outputs from the context-aware atten-
tion module 𝐻 ′′′ and the task-oriented attention module �̃� along the
feature dimension to obtain the integrated sequence representation
�̃� ′ = 𝐻 ′′′ ∥ �̃� ∈ R𝑁×𝑇×𝐹 ′ . Subsequently, �̃� ′ is fed into a two-layer
9

fully connected network, culminating in the final output of our model.
The formula is shown below:

�̂� = 𝑊2 ⋅ 𝜑
(

𝑊1 ⋅ �̃� ′ + 𝑏1
)

+ 𝑏2 (11)

here �̂� ∈ R𝑁×𝑇 ′×2 represents the predicted future 𝑇 ′ time steps of
irport network departure and arrival delay sequences. The parameters
1, 𝑊2, 𝑏1, and 𝑏2 are learnable weights and biases in the model. 𝜑 () is

he activation function. Afterward, our model is trained and optimiza-
ion is performed using the L1 loss function in order to minimize the
rror between the predicted values �̂� and the labeled values 𝐗:

= 1
𝑁 ⋅ 𝑇 ′ ⋅ 2

𝑁
∑

𝑖=1

𝑇 ′
∑

𝑗=1

2
∑

𝑐=1

|

|

|

𝐗𝑖,𝑗,𝑐 − �̂�𝑖,𝑗,𝑐
|

|

|

(12)

. Experiments

.1. Datasets

To assess the model’s generalization ability under various condi-
ions, we evaluate its performance on two public datasets: the U.S.
ataset and the China dataset, as referenced in [4]. Each dataset
omprises two components: delay information and weather data. The
.S. delay dataset, sourced from the U.S. Bureau of Transportation
tatistics,2 includes flight records from January 1, 2015, to December
1, 2021, across 360 airports. In our analysis, we select only 70
igh-capacity airports to minimize outlier data from remote locations.
he U.S. weather dataset, adopted from [33], classifies weather into
ight categories based on specific thresholds: normal, severe cold,
og, hail, rain, snow, storm, and other precipitation. The China delay
nd weather dataset, obtained from Xiecheng,3 encompasses delay and
eather information from a network of Chinese airports from April 30,
015, to May 1, 2017. We focus on 50 airports with higher traffic vol-
mes. This dataset categorizes weather into seven types: thunderstorms,
howers, torrential rain, heavy rain, light rain, cloudy, sunny, and fog.
o align the data more closely with peak flight hours, we exclude flight
ecords between 12 A.M. and 6 A.M. from both datasets.

We employ a window size of 30 min and aggregate flight records
nto corresponding time slots based on their originally scheduled take-
ff and landing times. Similar to the data preprocessing in [4], we
mpose a maximum delay limit of 30 min. Let 𝐗arr ∈ R𝑁×𝑇×1 represent

the arrival values and 𝐗dep ∈ R𝑁×𝑇×1 represent the departure values
after aggregation from the raw data. They are defined as follows:

𝐗dep
𝑖,𝑗 =

∑

𝑖∈𝐕
∑

𝑗∈𝐒 min
(

𝐫dep
𝑖,𝑗 , 30

)

|𝐕 ∩ 𝐒|

𝐗arr
𝑖′ ,𝑗′ =

∑

𝑖′∈𝐕′
∑

𝑗′∈𝐒′ min(𝐫arr
𝑖′ ,𝑗′ , 30)

|𝐕′ ∩ 𝐒′|

(13)

Here, 𝐫dep
𝑖,𝑗 and 𝐫arr

𝑖′ ,𝑗′ represent the departure and arrival delay of a
flight departing from airport 𝑖 at time 𝑗 and arriving at airport 𝑖′ at time
𝑗′. 𝐕 and 𝐕′ are the sets of flights departing from and arriving at airport
𝑣, respectively, while 𝐒 and 𝐒′ are the sets of flights departing from
and arriving during the timestamps [𝐬, 𝐬 + 30). During the calculation
of aggregated delay information, two issues arise. Firstly, we exclude
all records with missing values or unusual statuses, such as flight
cancellations. Secondly, each flight record is split into two independent
data (𝐫dep

𝑖,𝑗 and 𝐫arr
𝑖′ ,𝑗′ ). Consequently, a single flight may be included in

the arrival delay calculations but excluded from the departure delay
calculations if it departs before 12 P.M. and arrives after that time.
Additionally, it is important to note that negative delays are present in
the data, as some flights may depart or arrive earlier than scheduled.

2 https://www.transtats.bts.gov/DL_SelectFields.aspx?gnoyr_VQ=FGJ&QO_
u146_anzr=b0-gvzr

3 https://pan.baidu.com/s/1dEPyMGh

https://www.transtats.bts.gov/DL_SelectFields.aspx?gnoyr_VQ=FGJ&QO_fu146_anzr=b0-gvzr
https://www.transtats.bts.gov/DL_SelectFields.aspx?gnoyr_VQ=FGJ&QO_fu146_anzr=b0-gvzr
https://pan.baidu.com/s/1dEPyMGh
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It is crucial to note that both datasets, particularly the China dataset,
contain a substantial number of missing values, which significantly
increases the complexity of the prediction task.

The adaptive graph learning module is composed of two key com-
ponents: an adaptive matrix derived from node embeddings and a
predefined matrix obtained from the input. Similar to other spatial–
temporal prediction models with adjacency matrices [4], the predefined
matrix can be computed using a Gaussian kernel based on the distances
between airports. Let 𝐝𝑖,𝑗 represent the distance between airport 𝑖 and
irport 𝑗. Then, the global adjacency matrix 𝐀glb ∈ R𝑁×𝑁 can be
omputed as follows:

glb
𝑖,𝑗 =

⎧

⎪

⎨

⎪

⎩

exp
(

− 𝐝𝑖,𝑗 2

𝜎2

)

if 𝐀glb
𝑖,𝑗 > 0.1

0 if 𝐀glb
𝑖,𝑗 ≤ 0.1

(14)

.2. Evaluation metrics

In all experiments, we predict network-wide arrival and departure
elays using the China dataset. We employ Mean Absolute Error (MAE)
nd Root Mean Square Error (RMSE) as our evaluation metrics. Let
̂ ∈ R𝑁×𝑇 ′×2 denote the predicted network-wide airport delay over

time span, while 𝐗 ∈ R𝑁×𝑇 ′×2 denote the observed values. These
etrics are defined as follows:

𝑀𝑆𝐸(𝐗, �̂�) =

√

√

√

√

√

1
𝑁 ⋅ 𝑇 ′ ⋅ 2

𝑁
∑

𝑖=1

𝑇 ′
∑

𝑗=1

2
∑

𝑐=1

(

𝐗𝑖,𝑗,𝑐 − �̂�𝑖,𝑗,𝑐

)2

𝑀𝐴𝐸(𝐗, �̂�) = 1
𝑁 ⋅ 𝑇 ′ ⋅ 2

𝑁
∑

𝑖=1

𝑇 ′
∑

𝑗=1

2
∑

𝑐=1

|

|

|

𝐗𝑖,𝑗,𝑐 − �̂�𝑖,𝑗,𝑐
|

|

|

(15)

.3. Experimental setups

To evaluate the predictive accuracy of our proposed model and
ther models, we conduct multi-step ahead forecasting on both
atasets. Each dataset is partitioned into three subsets: a 60% training
et, a 20% validation set, and a remaining 20% test set. Following
he setup used in [4], we adopt different time span configurations for
he two datasets. The China dataset, which has more missing values
nd requires a larger input window, utilizes a 36-time-point historical
equence to predict the subsequent 12-time-point future sequence. In
ontrast, the U.S. dataset employs a 12-time-point historical sequence
o predict the subsequent 12-time-point future sequence.

The baseline models encompass typical approaches from statistical
nalysis, machine learning, and graph neural network methodologies.
hese include:

• HA: This model utilizes historical delay data, taking its mean
value for prediction purposes.

• VAR [34]: It captures the dynamic behavior of temporal patterns,
offering superior forecasts based on potential future trajectories
of the delay.

• ARIMA [35]: This model employs varying parameters across dif-
ferent locations and times to provide short-term traffic data fore-
casts.

• SVR [36]: It identifies delay patterns by using a kernel function
to map non-linear delay data onto an optimal hyperplane in
high-dimensional space.

• GAT [30]: It captures spatial dependencies through a cross-
attention mechanism between different nodes.

• GRU [37]: This model leverages advanced recurrent units to
represent both short-term and long-term temporal dependencies
effectively.

• ASTGCN [21]: This model extracts multi-level periodic patterns
by integrating a spatial–temporal attention mechanism with con-
volution techniques.
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• STCGAT [25]: This model generates spatial adjacency subgraphs
using node embedding techniques in a step-wise manner, dynam-
ically modeling a changing graph.

• STPN [4]: It employs a multi-graph convolution model alongside
a self-attention mechanism to predict delays in large-scale airport
networks.

The baseline models are open-sourced with optimized hyper-
arameters. Our model operates on the PyTorch 1.13.1 framework.
ey settings include a batch size of 64 and a hidden dimension for

he GRU cell set at 192. Other critical hyper-parameters, such as the
ode embedding dimension, the weather embedding dimension, and
he number of attention heads in the temporal module and the task-
riented modules, are detailed in Fig. 8. Training is executed using the
dam optimizer with an initial learning rate of 0.001. The best model

s selected based on minimizing the MAE value.
Experiments are conducted on a high-performance computing plat-

orm. For each experiment, a computing node is allocated, comprising
ne CPU (Intel Xeon Gold 6152 @ 2.10 GHz, 44 cores) and three GPUs
NVIDIA TITAN RTX, 24 GB memory).

.4. Main results and analysis

The performance of our proposed model and other baseline models
re shown in Table 5 for the China dataset and Table 6 for the U.S.
ataset. We compare their performance in a 3-step (1.5 h), 6-step (3 h),
nd 12-step (6 h) length that reflects learning ability on short-term and
ong-term patterns. Overall, our model demonstrates the lowest values
or both MAE and RMSE on China and U.S. datasets, underscoring its
uperior predictive accuracy compared to actual values. Looking deeper
nto the result, we can make several observations:

1. Models utilizing spatial–temporal approaches, including AST-
GCN, STPN, STCGAT, and FAST-CA, have demonstrated sig-
nificant superiority over conventional statistical and machine
learning models in performance. These spatial–temporal models
excel at capturing the intrinsic spatial and temporal dynamics
present in delay data. In contrast, other models typically con-
centrate on either spatial or temporal features exclusively, which
limits their overall effectiveness in prediction.

2. In the U.S. dataset, an unexpected outcome is observed where
the GRU model surpasses some spatial–temporal models, a phe-
nomenon not mirrored in the China dataset. This discrepancy
may stem from the more distinctly defined spatial correlations
within the U.S. data, which GRU effectively exploits to discern
spatial–temporal relationships. Conversely, the complexity and
diversity of spatial–temporal patterns in the China dataset ren-
der spatial–temporal models more adaptable, and thus more
efficacious.

3. In our study, FAST-CA emerges as the most effective among
the spatial–temporal models, outperforming STPN,4 which it-
self exhibits superior performance over STCGAT and ASTGCN.
STPN’s efficacy is attributed to its integration of multi-graph
convolution, self-attention mechanisms, and advanced feature
extraction, which collectively enable it to comprehensively cap-
ture spatial–temporal dependencies in complex, large-scale avi-
ation networks. This integration significantly bolsters its under-
standing of intricate network characteristics and adaptability.
Conversely, STCGAT, despite emphasizing node adaptability and
dynamic graph modeling, encounters challenges in managing
the myriad of factors inherent in airport networks. ASTGCN,

4 While using identical datasets, STPN results presented in our table differ
rom those in the original paper. This variation is attributable to differences
n the dataset split ratio, batch size, and evaluation metrics used in our
xperimental setup.



Information Fusion 107 (2024) 102326C. Li et al.

m
a
u
s
T
i
g

o
t
w
a
l
i
C

Table 5
Results on the China delay dataset.

1.5 h 3 h 6 h

Method MAE RMSE MAE RMSE MAE RMSE

Arrival delay

HA 10.720(+3.237) 13.123(+3.072) 10.720(+2.351) 13.123(+2.148) 10.720(+1.678) 13.123(+1.502)
VAR 9.300(+1.817) 11.621(+1.570) 9.819(+1.450) 12.136(+1.161) 10.571(+1.529) 12.848(+1.227)
ARIMA 11.085(+3.602) 13.239(+3.188) 11.032(+2.663) 13.185(+2.210) 11.099(+2.057) 13.263(+1.642)
SVR 9.904(+2.421) 12.457(+2.406) 10.315(+1.946) 12.871(+1.896) 10.528(+1.486) 13.113(+1.492)
GAT 9.314(+1.831) 11.969(+1.918) 9.552(+1.183) 12.220(+1.245) 9.986(+0.944) 12.629(+1.008)
GRU 9.144(+1.661) 11.769(+1.718) 9.419(+1.050) 12.070(+1.095) 9.860(+0.818) 12.455(+0.834)
ASTGCN 8.912(+1.429) 11.601(+1.550) 9.128(+0.759) 11.898(+0.923) 9.465(+0.423) 12.184(+0.563)
STCGAT 8.468(+0.985) 11.209(+1.158) 8.776(+0.407) 11.527(+0.552) 9.154(+0.112) 11.898(+0.277)
STPN 8.214(+0.731) 10.695(+0.644) 8.797(+0.428) 11.347(+0.372) 9.348(+0.306) 11.988(+0.367)
FAST-CA 7.483 10.051 8.369 10.975 9.042 11.621

Departure delay

HA 10.441(+2.205) 12.929(+1.995) 10.441(+1.978) 12.929(+1.611) 10.441(+1.633) 12.929(+1.295)
VAR 9.718(+1.482) 12.065(+1.861) 10.324(+1.861) 12.635(+1.317) 10.918(+2.110) 13.160(+1.526)
ARIMA 11.099(+2.863) 13.263(+2.329) 11.593(+3.130) 13.658(+2.340) 11.639(+2.831) 13.687(+2.053)
SVR 10.185(+1.949) 12.805(+1.871) 10.474(+2.011) 13.128(+1.810) 10.620(+1.812) 13.308(+1.674)
GAT 9.735(+1.499) 12.506(+1.572) 9.904(+1.441) 12.771(+1.453) 10.761(+1.953) 13.426(+1.792)
GRU 9.311(+1.075) 12.037(+1.103) 9.574(+1.111) 12.337(+1.019) 9.940(+1.132) 12.747(+1.113)
ASTGCN 9.151(+0.915) 11.870(+0.936) 9.354(+0.891) 12.069(+0.751) 9.609(+0.801) 12.317(+0.683)
STCGAT 8.291(+0.055) 11.197(+0.263) 8.546(+0.083) 11.469(+0.151) 8.871(+0.063) 11.792(+0.158)
STPN 8.656(+0.420) 11.205(+0.271) 8.858(+0.395) 11.444(+0.126) 9.112(+0.304) 11.756(+0.122)
FAST-CA 8.236 10.934 8.463 11.318 8.808 11.634
reliant mainly on shallow attention mechanisms, demonstrates
relatively less proficiency in capturing complex spatial–temporal
patterns. In the subsequent sections, we will delve into the
distinct advantages of FAST-CA in handling the complexities of
spatial–temporal dynamics within aviation networks.

4. A standout feature of FAST-CA is its adaptive learning capacity
for generating adjacency matrices, a significant departure from
the static, predefined matrices utilized in STPN and similar
models. This distinctive capability not only strengthens the the-
oretical framework of our approach but is also substantiated
by extensive numerical analyses. Our findings demonstrate con-
sistent results across datasets from both the U.S. and China,
with particularly pronounced performance enhancements ob-
served in the China dataset. In terms of short-term predictions,
FAST-CA exhibits remarkable improvements in the China dataset
when compared to STPN, the current benchmark model. Em-
ploying an identical partition ratio and batch size, our model
achieves a reduction in MAE by 9.2% for the 3-step arrival
delay forecast and 4.8% for the 3-step departure delay forecast.
Conversely, in the U.S. delay dataset, the predictive edge of
FAST-CA is less pronounced, showing a relative decrease in
MAE of less than 1% for the 3-step arrival delay forecast and
4.2% for the 3-step departure delay forecast. This capability
proves especially advantageous in addressing challenges posed
by significant portions of missing values, as observed in the
China dataset. This aspect highlights FAST-CA’s robustness and
adaptability in diverse data environments.

In summary, our FAST-CA model showcases exceptional perfor-
ance in both the China and U.S. datasets, outperforming traditional

pproaches and several existing spatial–temporal models. The partic-
larly significant improvements observed in the China dataset under-
core the model’s preeminence in spatial–temporal prediction tasks.
his performance highlights FAST-CA’s robustness and versatility, mak-

ng it a valuable tool for complex delay prediction scenarios in diverse
eographical contexts.

As depicted in Fig. 5, our study not only demonstrates the efficacy
f the FAST-CA model in predicting arrival delays across datasets from
he United States and China but also conducts a comparative analysis
ith four other models: STPN, ASTGCN, GAT, and GRU. FAST-CA
deptly merges spatial and temporal dynamics via an adaptive graph
earning module complemented by a dual attention mechanism, which
ncludes both self and cross-attention. These features empower FAST-
11

A to discern complex interactions among flight departure and arrival
sequences, alongside considering the impact of external factors such
as weather conditions, thereby significantly enhancing the precision of
predictions in airport network delay propagation.

In Fig. 5, each visualization step, representing a 30 minute interval
and covering a total of 160 time steps, showcases FAST-CA’s superior
data fitting capabilities across all four airport cases. The model’s effi-
cacy is particularly marked in two categories of airports within each
dataset: those with substantial delays and those with prevalent missing
data. The airports include:

• Boston Logan International Airport (BOS)
• Will Rogers World Airport (OKC)
• Shanghai Hongqiao International Airport (SHA)
• Beijing Nanyuan Airport (NAY)

Notably, FAST-CA demonstrates exceptional predictive accuracy,
particularly at operationally complex airports such as BOS and SHA.
In contrast to GRU, which focuses solely on time, and GAT, which
considers only spatial relationships, FAST-CA’s adaptive graph learning
module dynamically refines the graph structure, capturing nuanced
spatial–temporal dependencies among flights. Furthermore, its dual
attention mechanism enhances the model’s ability to interpret complex
interrelations across different time points and spatial locations in the
time series. This multidimensional capability enables FAST-CA to ac-
curately capture fluctuations, even amidst significant data variability.
It outperforms the unidimensional focus of models like GRU and GAT,
offering a more robust solution than other spatial–temporal models like
ASTGCN and STPN.

Moreover, compared to road traffic datasets, the airport delay
dataset presents a more complex and erratic nature, amplifying the
research challenges. FAST-CA, with its advanced learning mechanisms,
demonstrates remarkable adaptability and robustness, especially in
handling airports with significant instances of missing data, such as
OKC and NAY. This adaptability, surpassing the limitations inherent in
models like GRU and GAT, and even outperforming ASTGCN and STPN,
plays a pivotal role in FAST-CA’s ability to effectively manage missing
data and identify intricate delay patterns. Thus, in scenarios with
extensive missing data and severe airport delays, FAST-CA maintains
higher accuracy, showcasing its advanced technology in managing
complex situations and incomplete data.

In Figs. 6 and 7, we illustrate spatial visualizations of the predic-
tions generated by the FAST-CA, STPN, and ASTGCN models across
12 time steps for datasets from China and the U.S. Each circle on

the map denotes an airport’s location, with its delay time represented
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Table 6
Results on the U.S. delay dataset.

1.5 h 3 h 6 h

Method MAE RMSE MAE RMSE MAE RMSE

Arrival delay

HA 9.089(+2.470) 11.847(+2.191) 9.089(+1.778) 11.847(+1.859) 9.089(+1.507) 11.847(+1.571)
VAR 7.795(+0.753) 10.468(+0.812) 8.123(+0.812) 10.824(+0.836) 8.479(+0.897) 11.237(+0.961)
ARIMA 10.508(+3.466) 13.894(+4.238) 10.481(+3.170) 13.863(+3.875) 10.599(+3.017) 14.020(+3.744)
SVR 8.175(+1.133) 10.947(+1.291) 8.487(+1.176) 11.271(+1.283) 8.736(+1.154) 11.560(+1.284)
GAT 7.595(+0.553) 10.222(+0.566) 7.856(+0.545) 10.492(+0.504) 8.337(+0.755) 10.995(+0.719)
GRU 7.768(+0.726) 9.981(+0.325) 7.986(+0.675) 10.659(+0.671) 8.371(+0.789) 11.035(+0.759)
ASTGCN 7.396(+0.354) 10.130(+0.474) 7.557(+0.246) 10.316(+0.660) 8.011(+0.429) 10.727(+0.451)
STCGAT 7.416(+0.374) 10.065(+0.409) 7.648(+0.337) 10.292(+0.304) 7.874(+0.292) 10.507(+0.231)
STPN 7.077(+0.035) 9.743(+0.087) 7.333(+0.022) 10.061(+0.073) 7.669(+0.087) 10.461(+0.185)
FAST-CA 7.042 9.656 7.311 9.988 7.582 10.276

Departure delay

HA 6.519(+1.916) 8.631(+1.757) 6.519(+1.824) 8.631(+1.668) 6.519(+1.629) 8.631(+1.532)
VAR 5.561(+0.958) 7.656(+0.782) 5.817(+1.122) 7.925(+0.962) 6.165(+1.275) 8.304(+1.205)
ARIMA 7.607(+3.004) 10.549(+3.675) 7.587(+2.892) 10.551(+3.588) 7.653(+2.763) 10.643(+3.544)
SVR 5.962(+1.359) 8.131(+1.257) 6.240(+1.545) 8.413(+1.450) 6.429(+1.539) 8.651(+1.552)
GAT 4.854(+0.251) 6.989(+0.115) 5.050(+0.355) 7.121(+0.158) 5.362(+0.472) 7.373(+0.274)
GRU 4.875(+0.272) 6.990(+0.116) 4.983(+0.288) 7.099(+0.136) 5.287(+0.397) 7.338(+0.239)
ASTGCN 4.829(+0.226) 7.052(+0.178) 4.898(+0.203) 7.109(+0.146) 5.357(+0.467) 7.422(+0.323)
STCGAT 4.835(+0.232) 6.977(+0.103) 4.839(+0.144) 7.035(+0.072) 4.973(+0.083) 7.189(+0.090)
STPN 4.804(+0.201) 6.974(+0.100) 4.927(+0.232) 7.101(+0.138) 5.109(+0.219) 7.299(+0.200)
FAST-CA 4.603 6.874 4.695 6.963 4.890 7.099
Fig. 5. Arrival delay prediction visualization on U.S. and China dataset.
by a color map. For improved clarity, the size of each circle indi-
cates the respective airport’s traffic volume, thus vividly depicting the
spatial spread of delays. Although all three spatial–temporal models
incorporate attention mechanisms, FAST-CA distinguishes itself with
its adaptive learning capabilities and dynamic graph properties. These
12
attributes allow FAST-CA to more accurately reflect real-world airport
delay scenarios, demonstrating its superior proficiency in capturing
intricate spatial–temporal dependencies.

From Fig. 6, it becomes clear that the Yangtze River Delta and Bohai
Bay areas in China are significantly impacted by delays. The FAST-CA
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Fig. 6. Spatial visualization of 12-step ahead departure delay prediction on China dataset.
model’s schematic representation accurately depicts these high-delay
regions, aligning well with real-world scenarios in areas exhibiting
lower delays. Conversely, the performance of the other two models,
particularly the STPN, reveals notable discrepancies. For instance, the
STPN model predominantly captures extreme delays at specific airports
but falls short of reflecting broader regional delay patterns. Moreover,
as shown in Fig. 7, the delay dynamics across various regions of the
United States are effectively illustrated. The central United States, for
example, is characterized by higher delays, with the bustling Denver
International Airport exhibiting significant congestion.

In practical terms, the FAST-CA model’s exceptional performance
offers substantial support for air traffic flow management. Its capacity
to accurately forecast arrival and departure delays hours in advance
is particularly beneficial for managing intricate situations and incom-
plete datasets. Such comprehensive effectiveness establishes FAST-CA
as a valuable asset in tackling real-world challenges in airport delay
prediction.

Finally, we have compiled statistics on the parameters and training
costs for each model, as detailed in Table 7. The FAST-CA model
notably leads in parameter count, a complexity that usually signi-
fies a greater ability to capture data features, potentially enhancing
prediction accuracy. Despite the longest training time among the mod-
els, this duration is deemed reasonable against the backdrop of the
model’s extensive parameterization. Moreover, when considering the
ratio of parameter quantity to runtime, our training duration is highly
acceptable. This holds particularly true for the China dataset, where
FAST-CA’s tailored optimization achieves faster training speeds with-
out sacrificing complexity. This efficiency suggests that the additional
training time FAST-CA requires is a worthwhile trade-off for its superior
predictive performance, especially evident in its handling of the China
dataset. Here, FAST-CA not only demonstrates relative efficiency in
training time but also excels in predictive outcomes due to its specific
optimization, striking an optimal balance between performance and ef-
ficiency. Thus, considering the parameters, training time, and potential
for enhanced prediction accuracy, FAST-CA showcases an outstanding
cost-performance ratio in our performance assessment.
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Table 7
Models parameters and training cost statistics.

Model U.S. dataset China dataset

Parameters Train time (epoch) Parameters Train time (epoch)

GAT 1788 27.1 s 4092 9.7 s
GRU 219660 30.6 s 256524 8.8 s
STCGAT 700088 144.5 s 2110064 160.2 s
ASTGCN 450031 181.3 s 450031 111.7 s
STPN 94580 232.1 s 94576 80.9 s
FAST-CA 3976292 633.9 s 3976090 205.1 s

4.5. Ablation study

To gain deeper insights into how each module extracts specific
patterns, we conduct six experiments on FAST-CA-based models, with
a particular component either removed or modified in each variant.
Additionally, we conduct four crossover experiments by substituting
key components of the STPN with modules from FAST-CA, illustrating
the effective applicability of FAST-CA modules across various scenarios.
Moreover, recognizing the pivotal role of AFMI–GAT in feature aggre-
gation, we replace the spatial feature extraction modules in different
models with AFMI–GAT and undertake four ablation studies. These
studies are aimed at evaluating its contributions towards enhancing
efficiency, accuracy, and scalability. The initial two tasks utilize the
China dataset, which poses a more complex forecasting challenge due
to its unique characteristics. The final task employs both the China and
U.S. datasets, which differ significantly in flight volume, providing a
comprehensive assessment of the models’ scalability and performance
across diverse operational contexts.

Regarding task 1, the variants are detailed as follows:

1. FAST-CA_W: We remove the weather inputs along with the fused
module that combines weather and delay inputs.

2. FAST-CA_TO: We exclude the task-oriented module responsi-
ble for extracting relationships between departure and arrival
delays.
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Fig. 7. Spatial visualization of 12-step ahead departure delay prediction on U.S. dataset.
Table 8
Results for FAST-CA and its ablations on arrival and departure delays with feature
dimensions.

Average Arrival delay Departure delay

Variants MAE RMSE MAE RMSE MAE RMSE

FAST-CA 8.346 11.069 8.240 10.870 8.463 11.283

FAST-CA_W 8.393 11.161 8.277 10.967 8.520 11.372
FAST-CA_TO 8.374 11.110 8.280 10.922 8.477 11.313
FAST-CA_ST 8.600 11.314 8.453 11.099 8.762 11.547
FAST-CA_G 8.405 11.125 8.334 10.940 8.483 11.326
FAST-CA_L 8.447 11.164 8.336 10.971 8.570 11.373
FAST-CA_PE 8.434 11.118 8.315 10.903 8.566 11.351

3. FAST-CA_ST: The spatial–temporal fusion module is replaced
with a standard GAT module, which only identifies spatial pat-
terns within the graph.

4. FAST-CA_G: We omit the predefined matrix as inputs, limiting
the model to learning only local adaptive graph structures.

5. FAST-CA_L: We remove the entire adaptive learning module.
Consequently, the model evaluates the relationships between
different airports solely based on the global adjacency matrix.

6. FAST-CA_PE: We exclude the positional encoding module, which
is applied to the context-aware temporal attention module.

The results of the first six experiments are concisely summarized in
Table 8. Upon comparing our proposed models with the other variants,
several key observations emerge: (1) It is evident that our proposed
models outperform all similar variants. This underscores the harmo-
nious integration of each module, which efficiently captures and fuses
different types of patterns within the extensive airport network graph.
(2) The slight advantage of FAST-CA over FAST-CA_W suggests that the
model benefits minimally from weather information, as some patterns
can already be inferred from the embedded delay information. (3) The
significant performance drop in the FAST-CA_ST variant, compared to
FAST-CA_TO, reveals the critical role of the spatial–temporal module.
14
It captures spatial and temporal dependencies, which is essential for
recognizing factors in airport delay propagation. In contrast, the task-
oriented module primarily extracts relationships between arrival and
departure delays. (4) The inferior performance of FAST-CA_L compared
to FAST-CA_G indicates that local information (i.e., the dynamic and
adaptive adjacency matrix) is more crucial than global information
(i.e., the predefined adjacency matrix based on airport distances). The
model can effectively learn global patterns from weather and delay
inputs. (5) The poor predictive ability of FAST-CA_PE highlights the sig-
nificance of the flight schedule’s explicit daily and weekly periodicity.
The multi-level positional encoding module adeptly represents this pe-
riodicity in the attention mechanism, as further detailed in Section 4.7.
Notably, the variant model performs worse in predicting departure
delays, suggesting a higher sensitivity to periodicity representation in
departure delays.

As depicted in Fig. 8, several observations can be made when com-
paring the results under different hyper-parameters: (1) Both MAE and
RMSE display relatively stable variations across different experiments,
with optimal settings achieving a balance in the middle. This pattern
indicates that the model exhibits robustness, maintaining consistent
performance despite changes in these hyper-parameters. (2) Despite
the model’s overall robustness, the selection of appropriate hyper-
parameters emerges as a more critical factor influencing the model’s
predictive capability than the integration of different modules. For in-
stance, setting the node embedding dimension to 10 results in the worst
MAE outcome and the third-worst RMSE outcome when compared to
all other ablation configurations.

In task 2, we enhance the original STPN model by incorporating our
mechanisms and developing four distinct ablations, as follows:

1. STPN_TO: The ablation introduces a task-oriented attention mod-
ule, effectively capturing the interdependencies between depar-
ture and arrival delay sequences, thereby integrating temporal
dynamics more cohesively.

2. STPN_ST: The original graph convolution network is replaced
with a more advanced spatial–temporal fusion module, aimed
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Fig. 8. Experimental results with different hyper-parameters settings.
.

Table 9
Results for integrated models on arrival and departure delays with feature dimensions

Average Arrival delay Departure delay

Variants MAE RMSE MAE RMSE MAE RMSE

STPN 8.914 11.420 8.916 11.351 8.912 11.496

STPN_TO 8.809 11.266 8.800 11.204 8.818 11.333
STPN_ST 8.578 11.046 8.398 10.838 8.776 11.270
STPN_L 8.746 11.307 8.721 11.232 8.773 11.388
STPN_PE 8.404 11.176 8.268 10.963 8.553 11.406

at improving the model’s ability to capture complex spatio-
temporal interactions.

3. STPN_L: This variant integrates a predefined matrix with an
adaptive learning module within our framework, allowing the
model to better represent both stable and dynamic patterns
observed in the data.

4. STPN_PE: In this ablation, periodic representation is substituted
with a context-aware positional encoding mechanism, designed
to capture multi-level periodicity with enhanced precision and
context sensitivity.

The outcomes of the four experiments conducted in task 2 are presented
in Table 9. A comparative analysis between the original model and the
modified models reveals several key observations: (1) It is apparent that
15

all modified models demonstrate superior performance across various
metrics compared to the original model. This improvement underscores
the scalability and effectiveness of the FAST-CA modules in diverse
scenarios. (2) Notably, the STPN_PE model exhibits the most significant
discrepancy in error compared to the original model. This can be
attributed to the multi-level periodic embedding’s ability to intricately
represent the interrelations among different positions within a time
sequence. Such a representation is pivotal for the effective application
of the temporal attention mechanism, thereby enhancing predictive
accuracy.

To evaluate the effectiveness of the Adaptive Graph Learning mod-
ule, we execute four sets of one-to-one comparison experiments in
task 3. This involves integrating the module with both the STPN and
STCGAT models and conducting a comparative analysis focusing on
running time and validation loss. The specific modifications made are
as follows:

1. STPN_L: Unlike the original model, which relies solely on three
types of static adjacency matrices, we incorporate a dynamic
embedding module designed to extract local features more effec-
tively. This addition aims to enhance the model’s ability to adapt
to changing data patterns by capturing dynamic interactions.

2. STCGAT_G: In the original STCGAT model, the weights of the
graph attention module are determined based on node embed-
dings. We augment this mechanism with a predefined matrix,
enabling the model to capture global representations alongside
local interactions.
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Table 10
Ablation results for STPN variants.

Dataset Variants Running time Average Arrival delay Departure delay

MAE RMSE MAE RMSE MAE RMSE

China STPN 7792 s 8.914 11.420 8.916 11.351 8.912 11.496
STPN_L 7905 s 8.796 11.372 8.811 11.293 8.780 11.458

U.S. STPN 10230 s 6.223 8.704 7.344 9.999 5.043 7.093
STPN_L 10510s 6.101 8.691 7.312 10.041 4.826 6.995
Table 11
Ablation results for STCGAT variants.

Dataset Variants Running time Average Arrival delay Departure delay

MAE RMSE MAE RMSE MAE RMSE

China STCGAT 16807 s 8.681 11.439 8.820 11.501 8.527 11.370
STCGAT_G 17421 s 8.638 11.414 8.763 11.462 8.499 11.360

U.S. STCGAT 22063 s 6.235 8.655 7.630 10.260 4.767 6.967
STCGAT_G 22271 s 6.206 8.643 7.577 10.231 4.764 6.972
As depicted in Table 10, STPN_L exhibits a slight increase in running
time but achieves superior prediction performance across all metrics.
These results highlight the module’s efficiency and accuracy, particu-
larly with the models that only involve a predefined adjacency matrix.
With regard to the variants of STCGAT, results presented in Table 11
show a similar trend. The results demonstrate higher accuracy with a
marginal increase in running time for nearly all metrics. Given that
STCGAT dynamically computes the relationships between nodes, inte-
grating it with prior static knowledge enhances the model’s explanatory
power, thereby improving its predictive capabilities. In conclusion, the
AFMI–GAT framework enhances model performance in terms of accu-
racy with minimal additional running time across various baselines and
datasets. This underscores the framework’s efficiency, accuracy, and
scalability. Such results demonstrate the potential of AFMI–GAT in im-
proving prediction models without imposing substantial computational
overheads.

4.6. Visualization of dynamic and adaptive adjacency matrix

In this section, the concept of dynamic and adaptive adjacency
matrix is introduced. Fig. 9(a) illustrates the average departure delay
on January 11, 2016, for 50 airports in China. Four airports were
selected for detailed analysis: TNA, TYN, WNZ, and SJW, corresponding
to the indexes 25, 28, 32, and 35, respectively. The four airports
are interconnected. These airports are highlighted with yellow boxes
in Fig. 9(b), which depicts the normalized distance adjacency matrix
representing the distances between the 50 Chinese airports.

The adaptive adjacency matrix, being dynamic, more accurately
reflects the relationships between airports. Figs. 9(d), (e), and (f) clearly
show the dynamic changes within the data highlighted in yellow boxes.
Focusing on these four airports, the variations in their interrelationships
are distinctly noticeable at different times on January 11, 2016. The
actual departure delay data for these airports on the specified date is
plotted in Fig. 9(c).

Focusing on delay data at 16:00, 18:00, and 20:00 (highlighted in
yellow rectangles), we observe that the delay trends at both TNA and
WNA airports are increasing. This indicates a similarity and interre-
lation in the delay patterns of these two airports. This is reflected in
the data points corresponding to Figs. 9(d), (e), and (f) (marked with
red circles), where the color changes from dark blue to light blue,
signifying an increase in the correlation between the two airports. The
correlation between TNA and WNA airports is depicted by the red line
in Fig. 9(a). Similarly, between 16:00 and 22:00, the delay data for
TYN and SJW airports show comparable fluctuations (highlighted in
Fig. 9(c), indicating a mutual correlation in their delay patterns. This is
depicted in Figs. 9(d), (e), and (f) (marked with purple circles), where
the color transition from dark to light blue indicates a strengthening
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correlation. The correlation between TYN and SJW airports is depicted
by the purple line in Fig. 9(a). However, a static distance adjacency
matrix fails to capture these dynamically changing correlations.

This indicates that the continually learning and dynamically updat-
ing adaptive adjacency matrix provides a more accurate representation
of the actual conditions between airports than the distance adjacency
matrix. In the time series graph presented in Fig. 9(c), some data is
missing in the morning. This is attributed to the greater irregularity of
aviation delay datasets compared to road traffic datasets, making the
research more challenging.

4.7. Periodicity learning analysis

In this section, we describe the multi-level periodicity observed
in delay data and how our model reflects this pattern using context-
aware positional encoding. As shown in Fig. 10, we exemplify this
with a 3-week departure delay at the CAN airport in China. Fig. 10(a)
visualizes the ground truth and predicted delay, while Fig. 10(b) shows
the context-aware positional encoding for each timestamp. The delay
data reveals two levels of periodicity—daily and weekly. The red
boxes, highlighting the daily period, show that delays typically drop
to negative values after 12 P.M. and surge to positive values on a day-
to-day basis within a week. The purple boxes, indicating the weekly
period, reveal a significant peak in delays around 3 P.M. every Sunday.

By applying Eqs. (6) and (7), each timestamp is assigned a unique
phase shift within two-level periodic spans, which then repeats in the
subsequent period. The upper part of the encoding repeats daily, while
the lower part does so weekly. By combining this unique encoding
with delay features, our proposed model effectively captures periodic
delay patterns. Each encoding corresponds to its respective periodic
pattern. As revealed in the ablation study, the model is capable of
mitigating unpredictable interventions at specific times by fusing multi-
level periodic insights with delay embedding. This fusion of periodic
information and delay data highlights the model’s effectiveness in
accurately predicting delays.

4.8. Case study

To comprehend how the model effectively learns in different sce-
narios, we analyze the prediction error across various airports over a
period, correlating it with their factual characteristics to provide plau-
sible explanations. Then, we analyze the model’s performance across
various conditions, including different airport networks, and during
peak and off-peak hours.

The first case study is conducted using the China dataset. We
specifically track the departure and arrival volumes over time and use

the overall MAE as our accuracy metric. The results of this experiment
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Fig. 9. Visualization of the dynamic and adaptive adjacency matrix.
Fig. 10. Visualization of multi-level periodic delay and its related context-aware positional encoding.
are illustrated in Fig. 11. Airports are listed in descending order of
departure volume since the number of departures and arrivals at each
airport varies slightly.

It is observed that the prediction error tends to increase as the
airport volume decreases. This trend can be attributed to two possi-
ble reasons. Firstly, the enhanced accuracy at busier airports may be
partly attributed to the larger samples associated with them. These
samples typically have fewer missing values, making it easier for the
model to extract and learn patterns specific to these airports. Secondly,
airports with lower volumes often have smaller handling capacities
17
and are more susceptible to disruption from extreme conditions, which
are inherently more challenging to forecast. To further elucidate this
phenomenon with detailed examples, we select four typical airports
with distinct characteristics.

• Beijing Capital International Airport (PEK): Located in northern
China, Beijing experiences a temperate monsoon climate. Extreme
weather conditions like dust storms and gales occur rarely during
spring and summer. Beijing International Airport, serving as the
central hub of the northern Chinese aviation network, records the
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Fig. 11. Departure and arrival volumes and model prediction error at each Chinese airport.
highest volume in the period in our study. This dominant role
facilitates the propagation of delays to and from this airport. The
proposed model achieves accurate forecasts here, benefiting from
moderate weather conditions and a substantial dataset.

• Shanghai Hongqiao International Airport (SHA): Situated on
China’s east coast, Shanghai is characterized by a humid subtrop-
ical climate. The city frequently faces extreme weather events
such as typhoons and heavy rain, which significantly impact
flight punctuality and increase delay unpredictability. Although
Hongqiao International Airport is a major domestic and regional
hub in eastern China, it faces operational constraints due to
its location at the city’s edge. The combination of unforeseen
weather and operational disruptions makes it challenging for
the model to predict delays accurately, leading to the poorest
accuracy among all airports with over 200,000 departures and
arrivals.

• Sunan Shuofang International Airport (WUX): Located 100 km
west of Shanghai, Suzhou often experiences similar extreme
weather conditions in summer and autumn. Sunan Shuofang
International Airport is situated in the densely populated Jiangsu
region, in close proximity to two major hubs. This proximity
not only results in fewer samples for model training but also
leads to a lower priority in delay management. Consequently, the
combination of unpredictable extreme weather, small datasets,
and limited flight operations contributes to a higher prediction
error at this airport.

• Lanzhou Zhongchuan International Airport (LHW): Lanzhou, lo-
cated in Northwest China, is characterized by its semi-arid cli-
mate, which typically experiences less extreme weather than
other regions. This stable weather pattern contributes to the accu-
racy of flight delay predictions, as weather-related disruptions are
less severe and more predictable. Additionally, the airport plays
a crucial role in the region’s aviation network though it is not a
large hub. This balance ensures sufficient data to train the model
while avoiding the complexities and congestion typically found
in larger airports. Therefore, Lanzhou’s moderate weather condi-
tions and mid-sized flight records result in the best forecasting
ability among all airports with a comparable volume of traffic.

n the subsequent analysis, we evaluate the performance of FAST-CA
cross different airport networks. Building upon the original dataset
rom China, we have selected airports based on their traffic volume,
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rganizing them into three new networks comprising 10, 30, and d
50 airports, respectively, ranked from highest to lowest traffic vol-
ume. Experimental data presented in Table 12 reveals that in net-
works composed of high-traffic airports, the ASTGCN, STPN, and FAST-
CA all demonstrate reduced error rates. Notably, within networks
of increasingly higher-traffic airports, where delay characteristics are
more pronounced, the FAST-CA exhibits a markedly superior predictive
capability.

Furthermore, we analyze the performance of the model during peak
and off-peak hours. Utilizing spring festival travel data from Civil
Aviation Administration of China5 and the operational timetable of
CAN Airport,6 we categorize the hours of 6, 7, 8, 10, 11, and 12 as peak
hours, and 13, 14, 15, 21, and 23 as off-peak hours, thereby splitting
the original dataset into two distinct subsets. Figs. 12 and 13 illustrate
the performance of our model at the PEK and CAN airports under these
two conditions. Across these two newly created datasets, the FAST-CA
consistently demonstrates superior predictive capabilities, especially
for peak hours. This can be attributed to the higher traffic volume,
reduced instances of missing data, and stronger regularity during peak
hours, resulting in lower MAE and RMSE error values.

5. Conclusion and future works

This study introduces the FAST-CA framework, specifically designed
for predicting delay propagation in airport networks. The FAST-CA
model encompasses several key components: a fusion of dynamic graph
information inputs, an adaptive graph learning module, a spatial–
temporal fusion module, a context-aware temporal attention module,
and a task-oriented attention module. These components synergistically
work to learn adaptive dynamic relationships between airport nodes,
and coupled spatial–temporal dependencies, and to extract information
on periodicity and temporal dependencies, while considering the cou-
pling between departure and arrival sequences. Our model’s efficacy
is rigorously evaluated using two real-world datasets, demonstrating
its robustness and applicability. The FAST-CA model achieves state-
of-the-art performance, with each module significantly contributing to
the overall predictive accuracy improvement. More specifically, the
adaptive graph learning module in our FAST-CA framework uncovers
dynamic and adaptive relationships between airport nodes. The adja-
cency matrices learned through this module more accurately reflect

5 http://www.cadas.com.cn/news/2019122017481200001.html
6 https://www.csair.com/eu/de/tourguide/airport_service/airports_info/

omestic/18id40mhhm94.shtml

http://www.cadas.com.cn/news/2019122017481200001.html
https://www.csair.com/eu/de/tourguide/airport_service/airports_info/domestic/18id40mhhm94.shtml
https://www.csair.com/eu/de/tourguide/airport_service/airports_info/domestic/18id40mhhm94.shtml
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Table 12
Results on the China delay dataset with different airport networks.

1.5 h 3 h 6 h

Method MAE RMSE MAE RMSE MAE RMSE

Arrival delay

ASTGCN_10 6.436 8.571 6.872 9.147 7.448 9.851
STPN_10 6.384 8.381 6.944 9.059 7.712 10.035
FAST-CA_10 5.003 6.936 5.828 7.929 6.977 9.294
ASTGCN_30 7.788 10.130 8.105 10.511 8.496 10.942
STPN_30 7.415 9.476 7.958 10.096 8.599 10.873
FAST-CA_30 6.480 8.652 7.205 9.494 8.187 10.461
ASTGCN_50 8.881 11.624 9.124 11.869 9.459 12.203
STPN_50 8.908 11.607 9.369 12.150 9.877 12.735
FAST-CA_50 7.468 10.066 8.416 11.048 9.209 11.865

Departure delay

ASTGCN_10 8.854 12.518 8.874 12.522 9.022 12.673
STPN_10 6.889 8.863 7.208 9.303 7.662 9.933
FAST-CA_10 5.862 7.950 6.334 8.594 6.950 9.298
ASTGCN_30 8.738 12.215 8.760 12.367 8.882 12.414
STPN_30 7.942 10.298 8.267 10.697 8.699 11.260
FAST-CA_30 7.263 9.548 7.626 9.996 8.078 10.470
ASTGCN_50 8.804 12.617 8.822 12.698 8.918 12.568
STPN_50 9.050 11.693 9.252 12.011 9.590 12.404
FAST-CA_50 8.254 11.053 8.623 11.435 8.996 11.841
Fig. 12. Experimental results with peak hour and off-peak hour on PEK airport.
the temporal relationships of the respective nodes compared to static
distance matrices. The temporal attention module effectively captures
the daily and weekly semantic information inherent in the delay time
series. Meanwhile, the task-oriented attention module efficiently ex-
tracts coupled features of departure and arrival sequences. The fusion
of this information as output significantly enhances the accuracy of
our predictions, showcasing the efficacy of our approach in capturing
complex delay patterns in airport networks.

These findings not only underscore the efficacy of our FAST-CA
framework in handling the complexities of airport delay prediction but
also highlight its potential to provide comprehensive insights into delay
propagation dynamics. This research paves the way for more accurate
and reliable delay management strategies in air transportation systems,
contributing substantially to the field of delay prediction and manage-
ment. Our work, while pioneering, is not without its limitations. Firstly,
despite the model’s robust performance in leveraging operational flight
data and weather information, it may encounter challenges with data
sparsity, particularly in smaller airports or during certain periods,
19
suggesting a need for further exploration into handling missing data
more effectively. Secondly, although our framework achieves superior
predictive accuracy, its extensive parameter set necessitates a longer
runtime. This reveals an opportunity for optimizing computational
efficiency to enable faster, yet equally accurate, predictions. Lastly,
while the model demonstrates commendable adaptability across vari-
ous network sizes, its generalization to specific airport networks with
unique traffic volumes or geographical characteristics is an area that
could benefit from focused improvement. Addressing these limitations
will not only enhance the model’s applicability but also its operational
efficiency in diverse airport environments.

In our future research endeavors, we aim to delve into micro-
level modeling by considering the propagation of delays along flight
chains, integrating this aspect with the propagation process within
airport networks for a comprehensive and detailed examination of the
mechanisms underlying flight delay propagation. Furthermore, we plan
to explore more advanced methods of information fusion to enhance
both the predictive performance and interpretability of our models.



Information Fusion 107 (2024) 102326C. Li et al.
Fig. 13. Experimental results with peak hour and off-peak hour on CAN airport.
Additionally, we intend to investigate new algorithmic optimization
techniques or leverage more efficient computational frameworks to re-
duce the time required for model training and prediction. This endeavor
would necessitate examining more sophisticated graph neural network
architectures or developing innovative parallel processing techniques.
Finally, it would be highly desirable to explore how to effectively inte-
grate real-time data, such as weather changes and live flight statuses,
into our models to improve the accuracy and timeliness of predic-
tions. This approach needs to involve developing new data processing
workflows to rapidly respond to changes in real-time data.
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