Publications

(* indicates equal contribution)

TwinMarket: A Scalable Behavioral and Social Simulation for Financial Markets
Yuzhe Yang*, Yifei Zhang*, Minghao Wu*, Kaidi Zhang, Yunmiao Zhang, Honghai Yu, Yan Hu, Benyou Wang
{Financial AI; World Models} @ ICLR 2025 Workshop
A multi-agent framework that leverages LLMs to simulate socio-economic systems
Paper / Code / Project Page

UCFE: A User-Centric Financial Expertise Benchmark for Large Language Models
Yuzhe Yang*, Yifei Zhang*, Yan Hu*, Yilin Guo, Ruoli Gan, Yueru He, Mingcong Lei, Xiao Zhang, Haining Wang, Qianqian Xie, Jimin Huang, Honghai Yu, Benyou Wang
NAACL Findings 2025
A User-Centric framework designed to evaluate LLMs' ability to handle complex financial tasks
Paper / Code / Dataset

Open-FinLLMs: Open Multimodal Large Language Models for Financial Applications
Qianqian Xie, Dong Li, Mengxi Xiao, Zihao Jiang, Ruoyu Xiang, Xiao Zhang, Zhengyu Chen, Yueru He, Weiguang Han, Yuzhe Yang, Shunian Chen, Yifei Zhang, Lihang Shen, Daniel Kim, Zhiwei Liu, Zheheng Luo, Yangyang Yu, Yupeng Cao, Zhiyang Deng, Zhiyuan Yao, Haohang Li, Duanyu Feng, Yongfu Dai, VijayaSai Somasundaram, Peng Lu, Yilun Zhao, Yitao Long, Guojun Xiong, Kaleb Smith, Honghai Yu, Yanzhao Lai, Min Peng, Jianyun Nie, Jordan W. Suchow, Xiao-Yang Liu, Benyou Wang, Alejandro Lopez Lira, Jimin Huang, Sophia Ananiadou
arXiv preprint 2024
First open-source financial multimodal LLM: FinLLaVA-8B
Paper / Model

FAST-CA: Fusion-based Adaptive Spatial-Temporal Learning with Coupled Attention for airport network delay propagation prediction
Chi Li, Xixian Qi, Yuzhe Yang, Zhuo Zeng, Lianmin Zhang, Jianfeng Mao
Information Fusion 2024
SOTA spatio-temporal model for predicting airport network delay propagation
Paper

FedDTPT: Federated Discrete and Transferable Prompt Tuning for Black-Box Large Language Models
Jiaqi Wu, Simin Chen, Yuzhe Yang, Yijiang Li, Shiyue Hou, Rui Jing, Zehua Wang, Wei Chen, Zijian Tian
arXiv preprint 2024
A federated prompt tuning method for black-box LLMs, enhancing privacy, efficiency, and performance on non-iid data
Paper

Projects